FluidFIow

The Flow of Liquid via a Pump

(C) Flite Software NI Ltd

The flow of a Liquid via Pump

Problem

Water at $25^{\circ} \mathrm{C}$ is pumped from an open storage tank (0 barg) to an open overhead tank (0 barg) by means of a centrifugal pump. The piping system consists of a 15 m equivalent length of 6 " SCH 40 steel pipe from the open storage tank to the pump suction; a 4" SCH 40 steel pipe follows the pump discharge for an equivalent length of 15 m to the tank. The open storage tank bottom is at an elevation of 2 m . The end of the discharge line is at an elevation of 10 m above grade. The centerline of the pump is 1 m above grade. If it is desired to maintain a flow of water of $100 \mathrm{~m} 3 / \mathrm{hr}$ into the overhead storage tank. Determine the following:

1) Velocities in the pipes
2) Reynolds number in the pipes
3) Darcy friction factors
4) Friction loss in the pipes
5) Pump head
6) Pump differential pressure
7) NPSH available

Objective

Pumps are used to transfer liquids from the source with lower pressure to the sink with higher pressure. If the pump is not available, the liquid will move in the opposite direction due to pressure differences.

Pumps are also used to transfer liquids from the source at a lower elevation to the sink at a higher elevation.

In this example, you will build a model to illustrate the flow of liquid via a pump.
This example includes the following tasks:
Task 1 - Add the Boundaries, Pump, and Piping Components
Task 2 - Define the Boundaries, Fluid, Piping, and Pump
Task 3 - Select Results Unit Set
Task 4 - Calculate and Perform Hydraulic Analysis
Task 5 - Compare the FluidFlow Results to Hand Calculation

Task 1 - Add the Boundaries, Pump, and Piping Component

1. Start a new flowsheet by opening the FluidFlow software. The user interface will appear as shown below (Figure 1).

Figure 1: New flowsheet user interface.
2. Consider the boundary nodes to use for the system. Since we know the inlet and outlet pressure, we can use the Known or Assigned Pressure node available from the Boundaries tab on the Component Palette (Figure 2).

Figure 2: Known or Assigned Pressure Node.
3. Place two of these nodes (inlet \& outlet) on the flowsheet by left mouse-clicking on the icon on the Component Palette. To place the node on the flowsheet we need to left mouse-click in the desired location (Figure 3).

Figure 3: Known Pressure Nodes.
4. This represents our pipe boundaries. We can now add our fluid motive device by selecting the desired booster from the Component Palette. In this design case, let us select the centrifugal pump from the Component Palette (Figure 4).

Figure 4: Centrifugal Pump Icon.
5. Place the centrifugal pump icon on the flowsheet by left mouse-clicking on the icon on the Component Palette. To place the node on the flowsheet, we need to left mouse-click in the desired location (Figure 5).

Figure 5: Centrifugal Pump in the middle of the Known Pressure Nodes.
6. We can now connect the boundaries and centrifugal pump by selecting the desired pipe material from the Component Palette. In this design case, we know the pipe is a Schedule 40 steel pipe. Therefore, we need to select the Steel Pipe or Duct icon from the Component Palette (Figure 6).

Figure 6: Steel Pipe of Duct Icon.
7. To connect the inlet boundary and centrifugal pump, left mouse-click directly over the inlet boundary node (node 1) and again, left mouse-click directly over the centrifugal pump suction
(node 3). Note, when you position the mouse selector above the boundary node and centrifugal pump on the flowsheet, you will see the selector change to a green "tick" symbol (). This indicates that the software is ready to connect our new node. The hydraulic model will appear as shown below (Figure 7):

Figure 7: Hydraulic Model.
8. To connect the centrifugal pump and outlet boundary, left mouse-click directly over the centrifugal pump discharge (node 3) and again, left mouse-click directly over the outlet boundary node (node 2).

Figure 8: Hydraulic Model.
Note: The RED dot on the centrifugal pump (Figure 8) indicates the discharge side.
9. At this stage, we will notice that the software automatically assigns a unique User Number (reference number) to each node placed on the flowsheet. All boundaries and fittings have positive User Numbers whereas all pipes have negative User Numbers. In Figure 8, we can see that the inlet boundary, outlet boundary, and centrifugal pump are assigned with User Numbers "1", "2", and "3", respectively. The suction and discharge pipes are assigned with User Numbers "-1" \& "-2", respectively. Note, if these reference values have not appeared automatically, they may be toggled off. You can toggle these back on by selecting the buttons to the left of the flowsheet titled "Show or Hide Node Numbers" and "Show or Hide Pipe Numbers". The buttons appear as follows (Figure 9):

Figure 9: Show or Hide Node/Pipe Numbers buttons.

The automatic assignment of User Numbers helps us differentiate each of the nodes when we examine our systems - post calculation. This will become more apparent later.
10. Save your flowsheet as 03-FF Liq via Pump.FF3

Task 2 - Define the Boundaries, Fluid, Piping, and Pump

The next step is to edit the default data for each of the nodes placed on the flowsheet (Boundaries, Fluid, Piping, and Pump). Let us begin with the boundaries. We know the intended pressure units are in barg for both the inlet and outlet boundary. We can edit multiple nodes at once which will help speed up model development.
11. Left mouse-click on the inlet boundary (node 1) and whilst holding the SHIFT key, left mouse-click on the outlet boundary (node 2). You should now see both nodes highlighted on the flowsheet (Figure 10).

Figure 10: Highlighted Boundary Nodes.
12. We can now edit the data entry for both nodes at once from the Input Inspector on the Data Palette (Figure 11).

Figure 11: Input Inspector.
13. In this case we need to change the Pressure Unit from the default atm setting to barg. Left mouse-click on the Pressure Unit field and you will see a drop-down arrow symbol appear on the right-hand side. Click on this symbol and a drop-down menu will appear showing the various units you can choose from. Select barg from the list (Figure 12). We have now successfully changed the pressure units for both nodes.

Figure 12: Pressure Units.
14. We can now change the inlet elevation, pressure, and fluid temperature by selecting node 1. View the Data Palette and click the Input Tab. Enter the following specifications:

In this cell...	Enter...
Elevation	2
Pressure	0
Temperature	25

The Input Inspector on the Data Palette should now look like the screenshot given below (Figure 13).

Data Palette		
Messages	Input	Results
Rehart	List $\sqrt{\text { Watch }}$	
Unique Name		
Status	On	
Elevation	2	
Elevation Unit	m	
Pressure Model	Stagnation Pressure	
Pressure	0	
Pressure Unit	bar g	
Temperature	25	
Temperature Unit	C	
Fluid	water	
Fluid Type	Newtonian/NN-NonSettling	
Properties on Flowsheet	Hide	

Figure 13: Input Inspector at Node 1.
Note that we will keep the default water as our Fluid.
15. We can now change the outlet elevation and pressure by selecting node 2. View the Data Palette and click the Input Tab. Enter the specifications:

In this cell...	Enter...
Elevation	10
Pressure	0

The Input Inspector on the Data Palette should now look like the screenshot given below (Figure 14).

Data Palette	
Messages $\sqrt{\text { Input }} \sqrt{\text { Results }}$	Chart $\sqrt{\text { List } \sqrt{\text { Watch }}}$
Unique Name	
Status	On
Elevation	10
Elevation Unit	m
Pressure Model	Stagnation Pressure
Pressure	0
Pressure Unit	bar g
Temperature	15
Temperature Unit	C
Fluid	water
Fluid Type	Newtonian/NN-NonSettling
Properties on Flowsheet	Hide

Figure 14: Input Inspector at Node 2.
For the temperature input, we don't need to change it to $25^{\circ} \mathrm{C}$. Note that FluidFlow will use the operating conditions of the source fluid (node 1) in calculating the fluid properties such as density, viscosity, thermal conductivity, etc.
16. Let us now edit the default suction pipe data by selecting pipe number -1. You should now see that pipe number -1 is highlighted on the flowsheet (Figure 15).

Figure 15: Highlighted Pipe "-1".
17. View the Data Palette and click the Input Tab. Enter the following specifications:

In this cell...	Enter...
Length	15

Nominal Size	6 inch

To change the default 2-inch size, left click on the field titled Nominal Size and a button with 3 dots will appear (Figure 16):

Figure 16: Nominal Size with 3 dots button.
Click the button and a Set Pipe Dimension dialog box will appear (Figure 17):

Figure 17: Set Pipe Dimension Dialog Box.
This dialog box will allow us to access the pipe database (Figure 17). From the list of the available pipe sizes, click on the 6 inch to view the various pipe classifications for this diameter. Select Schedule 40 and click OK to complete this change (Figure 18).

Figure 18: Set Pipe Dimension Dialog Box.
18. The Input Inspector on the Data Palette should now look like the screenshot given below (Figure 19).

Data Palette	
Messages	Input
Results	Chart
List $\sqrt{\text { Watch }}$	
Unique Name	
Status	On
Length	15
Length Unit	m
Geometry	Cylindrical
Use Database Size	Yes
Nominal Size	6 inch
Classification	Schedule 40
Friction Model	Moody
Use Database Roughness	Yes
Roughness Description	Clean or new
Use Database Scaling	No
Scaling (0 to 50\%)	0
Sizing Model	Economic Velocity
Heat Loss Model	Ignore Heat Loss/Gain
Draw Thickness [1..5]	1
Draw Color	clBlack
Properties on Flowsheet	Hide

Figure 19: Input Inspector at Pipe Number "-1".
19. Let us now edit the default discharge pipe data by selecting pipe number -2. You should now see that pipe number -2 is highlighted on the flowsheet (Figure 20).

Figure 20: Highlighted Pipe "-2".
20. View the Data Palette and click the Input Tab. Enter the following specifications:

In this cell...	Enter...
Length	15
Nominal Size	4 inch

To change the default 2 -inch size, left click on the field titled Nominal Size and a button with 3 dots will appear (Figure 21):

Figure 21: Nominal Size with 3 dots button.
Click the button and a Set Pipe Dimension dialog box will appear (Figure 22):

Figure 22: Set Pipe Dimension Dialog Box.
This dialog box will allow us to access the pipe database (Figure 22). From the list of the available pipe sizes, click on the 4 inch to view the various pipe classifications for this diameter. Select Schedule 40 and click OK to complete this change (Figure 23).

Figure 23: Set Pipe Dimension Dialog Box.
21. The Input Inspector on the Data Palette should now look like the screenshot given below (Figure 24).

Data Palette	
Messages $\sqrt{\text { Input }} \sqrt{\text { Results }}$	Chart
List $\sqrt{\text { Watch }}$	
Unique Name	
Status	On
Length	15
Length Unit	m
Geometry	Cylindrical
Use Database Size	Yes
Nominal Size	4 inch
Classification	Schedule 40
Friction Model	Moody
Use Database Roughness	Yes
Roughness Description	Clean or new
Use Database Scaling	No
Scaling (0 to 50\%)	0
Sizing Model	Economic Velocity
Heat Loss Model	Ignore Heat Loss/Gain
Draw Thickness [1..5]	1
Draw Color	clBlack
Properties on Flowsheet	Hide

Figure 24: Input Inspector at Pipe Number "-2".
22. Let us now edit the default centrifugal pump data by selecting node 3. You should now see that node 3 is highlighted on the flowsheet (Figure 25).

Figure 25: Highlighted Centrifugal Pump Node.
23. View the Data Palette and click the Input Tab. Enter the following specifications:

In this cell...	Enter...
Elevation	1
Automatically Size	On
Sizing Model	Size for Flow
Design Flow	100

24. The Input Inspector on the Data Palette should now look like the screenshot given below (Figure 26).

Figure 26: Input Inspector at Centrifugal Pump.
Note: The Size for Flow sizing model is used to maintain a flow rate of $100 \mathrm{~m}^{3} / \mathrm{hr}$ as specified in our problem.
25. Save your flowsheet.

Task 3 - Select Results Unit Set

In FluidFlow, it is possible to change the default results unit set used to display variables.
26. View the top portion of the user interface. The Units selector is on the middle portion (Figure 27):


```
Pipes Boundaries Junctions Boosters Valves Controllers Check Valves General Resistances Size Change Relief Devices Heat Exchangers
```


Figure 27: Unit Selector.
27. Click the drop-down menu to select a unit set. There are two default unit sets available: System International and US Basic (Figure 28).

Figure 28: Unit Selector Drop-Down Menu.
28. You can click and select the desired unit set for use, or even create your own custom unit set. In this example, we will use System International and create our own unit set.
29. We can change our units by right mouse-clicking on the Results tab followed by selecting Results Units from the drop-down menu (Figure 29).

Figure 29: Result Units.
30. Alternatively, you can select F9. This opens a new dialogue box per Figure 30.

Figure 30: Set Result Units Dialogue Box.
31. Let us select the following units using the drop-down menu:

In this unit...	Select...
Flow	$\mathrm{m}^{3} / \mathrm{h}$
Pressure/Head	bar g
Pressure/Head Drop	bar

32. The Set Result Units dialogue box should now look like the screenshot given below (Figure 31). Select OK to apply the changes.

Figure 31: Modified Set Result Units Dialogue Box.
33. Now that we have set the results unit, let us save the custom result unit set. Click the drop-down button at the right of the default unit set and select the Save Environment option (Figure 32).

Figure 32: Save Environment Option.
34. The Save Environment dialogue box will appear (Figure 33).

Figure 33: Save Environment Dialogue Box.
35. On the Filename: section type Custom Unit 1 and click Save (Figure 34).

Figure 34: Modified Save Environment Dialogue Box.
36. Now that we have successfully added our custom unit, it is now available in the unit set drop-down menu (Figure 35). Let us now use Custom Unit 1 as our preferred unit set for this example

Figure 35: Unit Set Drop-Down Menu.
37. Save your flowsheet.

Task 4 - Calculate and Perform Hydraulic Analysis

Now that we have completed all the required inputs and customised the results unit set, we can now calculate the hydraulic model.
38. Calculate the model using the Calculate button located at the top of the flowsheet (Figure 36):

Figure 36: Calculate Button.
39. Check the converged hydraulic model in the flowsheet. The blue arrowhead shows that the flow direction is from the source node 1 to the sink node 2. Also, check if the pipes and pump are highlighted in RED, indicating that we have a warning message associated with the pipe elements and pump (Figure 37).

Figure 37: Converged Hydraulic Model
Note: Make sure that the RED Show or Hide Warnings Highlight button is selected in the Flowsheet Toolbar (Figure 38):
iv Show or Hide Warnings Highlight

Figure 38: Show or Hide Warnings Highlight Button.
40. Select the Messages tab on the Data Palette, we can view all warnings for the model including a description of each (Figure 39). The converged hydraulic model has no warnings. Therefore, we can now proceed with the analysis of the results.

Figure 39: Warning Messages Tab.

Note: Warnings are enunciated by the software automatically to help the user eliminate any unwanted operating conditions and to prompt the user to develop a more efficient system design. Warnings should always be reviewed and considered by the engineer. You can evaluate and choose to ignore warnings if you wish.
41. Left-click the pipe number -1 and select the Results tab on the Data Palette. We can see all the calculated values for this pipe. Figure 40 provides an overview of these results.

Figure 40: Calculated Results for Pipe "-1".
42. Left-click the pipe number -2 and select the Results tab on the Data Palette. We can see all the calculated values for this pipe. Figure 41 provides an overview of these results.

Figure 41: Calculated Results for Pipe "-2".
43. Warnings are enunciated based on the settings defined in Warnings \& Hints. You can view these set-points by selecting; Options | Warnings \& Hints or alternatively, select the Warnings \& Hints icon at the top of the flowsheet.
Warning \& Hints icon:
r)

Since we are modeling a liquid system, we are only interested in the Liquid Limits (Figure 42).

Figure 42: Warning and Hints: Liquid Limits.
44. As we can see in Figures 40 and 41, the actual flowing velocity of the liquid in pipes "-1" and "-2" are $1.49 \mathrm{~m} / \mathrm{s}$ and $3.38 \mathrm{~m} / \mathrm{s}$, respectively. The velocities are within the $0.2 \mathbf{- 4} \mathbf{~ m} / \mathrm{s}$ range for the minimum and maximum pipe velocity (Figure 42). The high-velocity warning is enunciated once the actual flowing velocity is higher than the maximum velocity level set in our warnings ($4 \mathrm{~m} / \mathrm{s}-$ See Figure 42).
45. FluidFlow automatically calculates an Economic Velocity and associated Exact Economic Size for each pipe in the model. These results can be viewed on the Results tab (Figure 40 and 41) and are provided as a suggestion in order to help develop an efficient system design. Note, it is down to the engineer's discretion as to whether or not the actual pipe size needs to be changed to be more in line with that suggested by the software. Therefore, the results for Economic Velocity and associated Exact Economic Size are suggested values only and do not have any effect on the overall operating conditions for the system.
46. Left-click the centrifugal pump (node 3) and select the Results tab on the Data Palette. We can see the calculated values for this pump. Figure 43 provides an overview of these results.

Data Palette	\square	
Messages Input Results	Chart List Watch	
User Number	3	
Duty Flow	100.0043	m3/h
Duty Pressure Rise	0.950	bar
Duty NPSH Available	10.8	m Fluid
In Stagnation Pressure	0.0791	barg
In Static Pressure	0.0680	barg
In Velocity	1.49	m / s
In Stag. Temperature	25.0	C
In Static Temperature	25.0	C
Out Stagnation Pressure	1.0290	barg
Out Static Pressure	0.9720	barg
Out Velocity	3.38	m / s
Out Stag. Temperature	25.0	C
Out Static Temperature	25.0	C
Composition \%	water (m)	100.0\%
	water (v)	100.000\%

Figure 43: Calculated Results for Pump.
Based on our design flow rate and system configuration, the pump will have a duty pressure rise (differential pressure) of $\mathbf{0 . 9 5 0}$ bar or $\mathbf{9 5 0 0 0} \mathbf{~ P a}$. The NPSHa is calculated as $\mathbf{1 0 . 8} \mathbf{~ m}$ fluid. If we wished to view the duty pressure rise using m fluid (head units), we can simply, right mouse-click on the Results tab and select Results Units. Change the field for Pressure/Head Drop to m Fluid and set the desired decimal point position (Figure 44).

e) Set Result Units \times					
General Gas Solids					
	Preferred Units		Dec. Places		
Area	mm2	\checkmark	1	1	-
Composition Mass \%			-	1	-
Composition Volume \%			4	3	-
Density	kg/m3	\checkmark	4	2	-
Elow	m3/h	\checkmark	1	4	-
Flow Coefficient Cv, Kv	usgpm/psi	\checkmark	4	3	-
Heat Transfer Coefficient	W/m2 C	\checkmark	4	5	-
Length	m	\checkmark	1	2	-
NPSH	m Fluid	\checkmark	+	1	-
Pipe Size	mm	\checkmark	-	1	-
Power	Watt	\checkmark	-	1	-
Pressure/Head	bara	\checkmark	4	4	-
Prescure/Head Dron	m-Eluid		4	3	\cdots
Pressure Gradient	Pa / m	\checkmark	-	1	-
Specific Heat Capacity	$\mathrm{J} / \mathrm{kg} \mathrm{C}$	\checkmark	+	2	-
Iemperature	c	\checkmark	+	1	-
Velocity	m / s	\checkmark	4	2	-
Viscosity	cP	\checkmark	-	3	*
	OK	Cancel		Hel	

Figure 44: Modified Set Result Units Dialogue Box.

In this case, the duty pressure rise is 9.7 m Fluid (Figure 45). We know this to be true since $\Delta \mathrm{H}=\Delta \mathrm{P} / \rho^{*} \mathrm{~g}\left(\Delta \mathrm{H}=95000 /\left(997.09^{*} 9.80665\right)=9.7 \mathrm{~m}\right.$ Fluid $)$.

Data Palette			
Messages	Input	Results	Chart
List	Watch		
User Number	$\mathbf{3}$		
Duty Flow	$\mathbf{1 0 0 . 0 0 4 3}$	m3/h	
Duty Pressure Rise	$\mathbf{9 . 7 1 5}$	m Fluid	
Duty NPSH Available	$\mathbf{1 0 . 8}$	m Fluid	
In Stagnation Pressure	$\mathbf{0 . 0 7 9 1}$	bar g	
In Static Pressure	$\mathbf{0 . 0 6 8 0}$	bar g	
In Velocity	$\mathbf{1 . 4 9}$	m / s	
In Stag. Temperature	$\mathbf{2 5 . 0}$	C	
In Static Temperature	$\mathbf{2 5 . 0}$	C	
Out Stagnation Pressure	$\mathbf{1 . 0 2 9 0}$	bar g	
Out Static Pressure	$\mathbf{0 . 9 7 2 0}$	bar g	
Out Velocity	$\mathbf{3 . 3 8}$	m / s	
Out Stag. Temperature	$\mathbf{2 5 . 0}$	C	
Out Static Temperature	$\mathbf{2 5 . 0}$	C	
Composition \%	water (m)	100.0%	
	water (v)	100.000%	

Figure 45: Modified Duty Pressure Rise Unit.
47. To answer the problem in this example, the following required parameters are also calculated by FluidFlow:

Parameter	Pipe "-1"	Pipe "-2"
Friction Loss	0.019 bar	0.149 bar
Reynolds Number	257094	387302
Darcy Friction Factor	0.0174	0.0178

48. Note that we can improve the presentation of our model by selecting the pipes "-1" and "-2" and changing the Draw Thickness and Draw Color from the Input Inspector. We have set the Draw Thickness to 3 and Draw Color to cIRed (Figure 46).

Data Palette	
Messages Input Results	Chart List Watch
Unique Name	
Status	On
Length	15
Length Unit	m
Geometry	Cylindrical
Use Database Size	Yes
Nominal Size	6 inch
Classification	Schedule 40
Friction Model	Moody
Use Database Roughness	Yes
Roughness Description	Clean or new
Use Database Scaling	No
Scaling (0 to 50\%)	0
Sizing Model	Economic Velocity
Heat Loce Model	Ignore Heat Locs/Gain
Draw Thickness [1..5]	3
Draw-Color	-lfied
Properties on Flowsheet	Hide

Figure 46: Modified Draw Thickness and Draw Color.
49. The hydraulic model should now look like the screenshot given below (Figure 47).

Figure 47: Hydraulic Model with Modified Draw Thickness and Draw Color.
50. Now let us show the properties of the boundaries. Left mouse-click on the inlet boundary (node 1) and whilst holding the SHIFT key, left mouse-click on the outlet boundary (node 2), and from the Input Inspector, change the field titled Properties on Flowsheet from Hide to Show (Figure 48).

Data Palette \quad П	
Messages Input Results	Chart List Watch
Unique Name	
Status	On
Elevation	10
Elevation Unit	m
Pressure Model	Stagnation Pressure
Pressure	0
Pressure Unit	bar g
Temperature	15
Temperature Unit	C
Fluid	water
Eluid Type	Newitonian/MN-MonSettling
Dropertiec on Elowsheet	Show
Alignment	Bottom
Font	Verdana,9,clWindowText,[]
Properties	

Figure 48: Show Properties on Flowsheet.
51. Now we will select the field titled Properties from the Input list. An Element Properties dialogue box will appear (Figure 49):

Figure 49: Element Properties Dialogue Box.
52. Place a checkmark in the box for the following parameters and click OK:

Element Properties	
Input	Results
Elevation	Density
Fluid	Temperature
Pressure	Viscosity

53. The hydraulic model should now look like the screenshot given below (Figure 50).

Figure 50: Hydraulic Model with Inlet and Outlet Boundary Properties.
54. Now let us show the properties of the pipes. Left mouse-click on the pipe number "-1" and whilst holding the SHIFT key, left mouse-click on the pipe number "-2" and from the Input Inspector, change the field titled Properties on Flowsheet from Hide to Show and Alignment from Bottom to Top (Figure 51).

Data Palette	
Messages	Input
Results	Chart
List $\sqrt{\text { Watch }}$	
Status	
Length	On
Length Unit	15
Geometry	m
Use Database Size	Cylindrical
Nominal Size	Yes
Classification	6 inch
Friction Model	Schedule 40
Use Database Roughness	Moody
Roughness Description	Yes
Use Database Scaling	No or new
Scaling (0 to 50\%)	0
Sizing Model	Economic Velocity
Heat Loss Model	Ignore Heat Loss/Gain
Draw Thickness [1..5]	3
Draw Color	clRed
Properties on Flowsheet	Show
Alignment	Top
Font	Verdana,9,clWindowText,[]
Properties	

Figure 51: Show Properties on Flowsheet.
55. Now we will select the field titled Properties from the Input list. An Element Properties dialogue box will appear (Figure 52):

Figure 52: Element Properties Dialogue Box.
56. Place a checkmark in the box for the following parameters and click OK:

Element Properties	
Input	Results
Length	Flow
	Friction Factor
	Friction Loss
	In Density
	In Velocity
	In Viscosity
	Out Density
	Out Velocity
	Out Viscosity
	Reynolds No
	Size
	Stagnation Pressure Loss
	Static Pressure Loss

57. The hydraulic model should now look like the screenshot given below (Figure 53).

Figure 53: Hydraulic Model with Pipe Properties.
58. Now let us show the properties of the pump. Left mouse-click on the pump (node 3) and from the Input Inspector, change the field titled Properties on Flowsheet from Hide to Show (Figure 54).

Data Palette		
Messages	Input	Results
Chart	List	Watch
Unique Name		
Status	On	
Elevation	1	
Elevation Unit	m	
Automatically Size	On	
Sizing Model	Size for Flow	
Design Flow	100	
Flow Unit	$\mathrm{m} 3 / \mathrm{h}$	
Discharge Pipe (RED)	-2	
Solids Derating	None	
Heat Loss Model	Ignore Heat Loss/Gain	
Properties on Flowsheet	Show	
Alignment	Bottom	
Font	Verdana,9,clWindowText,[]	
Properties		

Figure 54: Show Properties on Flowsheet.
59. Now we will select the field titled Properties from the Input list. An Element Properties dialogue box will appear (Figure 55):

Figure 55: Element Properties Dialogue Box.
60. Place a checkmark in the box for the following parameters and click OK:

Element Properties	
Input	Results
Design Flow	Duty Flow
	Duty NPSH Available
	Duty Pressure Rise In Density In Fluid Phase In Stagnation Pressure In Velocity In Viscosity Out Density Out Fluid Phase Out Stagnation Pressure Out Vapor Pressure Out Velocity Out Viscosity

61. The hydraulic model should now look like the screenshot given below (Figure 56).

Figure 56: Hydraulic Model with Pump Properties.
62. Save your flowsheet.

Task 5 - Compare the FluidFlow Results to Hand Calculation

FluidFlow software is designed to allow the modeling of fluid behaviour within complex piping systems, and accurately predict how the system will work for a given set of design conditions.

In this task, we will verify the accuracy of FluidFlow against our hand calculation.
Given:
$P_{1}=0 \mathrm{barg}$
$P_{2}=0 \mathrm{barg}$
$z_{1}=2 m$
$z_{2}=10 m$
Suction line size $=6$ " SCH 40
Discharge line size $=4$ " SCH 40
$L_{-1}=15.0 \mathrm{~m}$
$L_{-2}=15.0 \mathrm{~m}$
Volumetric Flow Rate, $\dot{q}=100 \frac{m^{3}}{h}$
Water at $25^{\circ} \mathrm{C}$

Required:
Velocity, $V_{-1}=V_{1}=$?
Velocity, $V_{-2}=V_{2}=$?
Reynolds Number, $\operatorname{Re}_{-1}=$?
Reynolds Number, $\operatorname{Re}_{-2}=$?
Darcy Friction Factor, $f_{D_{-1}}=$?
Darcy Friction Factor, $f_{D_{-2}}=$?
Pump Differential Head, W or $\Delta h=$?
Pump Differential Pressure, $\Delta P_{\text {Differential }}=$?
Friction loss $_{-1}=-\Delta P_{-1}=?$
Friction loss $_{-2}=-\Delta P_{-2}=$?
$\mathrm{NPSH}_{\text {Available }}=?$

Solution:
6" SCH 40, I.D. $=D_{-1}=154.1 \mathrm{~mm}=0.1541 \mathrm{~m}$
4" SCH 40, I.D. $=D_{-2}=102.3 \mathrm{~mm}=0.1023 \mathrm{~m}$
Density of Water at $25.0^{\circ} \mathrm{C}$ from FluidFlow Calculated Properties Database
$\rho_{H_{2} O}=997.05 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$
Viscosity of Water at $25.0^{\circ} \mathrm{C}$ from FluidFlow Calculated Properties Database
$\mu_{H_{2} \mathrm{O}}=0.890 c P$

Mechanical Energy Balance Equation:
$W^{\prime}=\Delta z \frac{g}{g_{c}}+\frac{\Delta V^{2}}{2 g_{c}}+\frac{\Delta P}{\rho}+\sum F$
Summation of Frictional Losses:
$\Sigma F=F_{\text {Line }}+F_{\text {Fittings }}+F_{\text {Contraction }}+F_{\text {Expansion }}+F_{\text {Metering }}$
$\frac{\Delta P}{\rho}=0\left(\right.$ Constant pressure, $\left.P_{1}=P_{2}\right)$
$F_{\text {Fittings }}=F_{\text {Contraction }}=F_{\text {Expansion }}=F_{\text {Metering }}=0$
$F_{\text {Line }_{-1}}=h_{\text {Line }_{-1}}=\frac{4 f_{F_{-1}} L_{-1} V_{-1}^{2}}{2 D_{-1} g_{c}}$
$F_{\text {Line }_{-2}}=h_{\text {Line }_{-2}}=\frac{4 f_{F_{-2}} L_{-2} V_{-2}^{2}}{2 D_{-2} g_{c}}$

Applying the above conditions to Mechanical Energy Balance equation:
$W^{\prime}=\Delta z \frac{g}{g_{c}}+\frac{\Delta V^{2}}{2 g_{c}}+0+F_{\text {Line }_{-1}}+F_{\text {Line }_{-2}}$
$W^{\prime}=\left(z_{2}-z_{1}\right) \frac{g}{g_{c}}+\frac{V_{2}^{2}-V_{1}^{2}}{2 g_{c}}+\frac{2 f_{F_{-1}} L_{-1} V_{-1}^{2}}{D_{-1} g_{c}}+\frac{2 f_{F_{-2}} L_{-2} V_{-2}^{2}}{D_{-2} g_{c}}$

Let us first solve for the cross - sectional area of the pipes " - 1"and " - 2".
Velocity, $V_{-1}=V_{1}=\frac{q}{S_{-1}}=\frac{q}{\frac{\pi}{4}\left(D_{-1}\right)^{2}}=\frac{100 \frac{m^{3}}{h} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}}{\frac{\pi}{4}(0.1541 \mathrm{~m})^{2}}=1.4894 \frac{\mathrm{~m}}{\mathrm{~s}}$
Velocity, $V_{-2}=V_{2}=\frac{q}{S_{-2}}=\frac{q}{\frac{\pi}{4}\left(D_{-2}\right)^{2}}=\frac{100 \frac{m^{3}}{h} \times \frac{1 h}{3600 \mathrm{~s}}}{\frac{\pi}{4}(0.1023 \mathrm{~m})^{2}}=3.3795 \frac{\mathrm{~m}}{\mathrm{~s}}$

Let us now solve for the value of the Reynolds number.

$$
\begin{aligned}
& R e_{-1}=\frac{D_{-1} V_{-1} \rho}{\mu}=\frac{(0.1541 \mathrm{~m})\left(1.4894 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(997.05 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)}{0.890 c P \times \frac{P a-s}{1000 c P}}=257122.9957 \\
& R e_{-2}=\frac{D_{-2} V_{-2} \rho}{\mu}=\frac{(0.1023 \mathrm{~m})\left(3.3795 \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(997.05 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)}{0.890 c P \times \frac{P_{a-s}}{1000 c P}}=387306.7052
\end{aligned}
$$

Let us solve the Fanning Friction Factors, $f_{F_{-1}}$ and $f_{F_{-2}}$
Perrys Chemical Engineers Handbook - 8th ed.
The Colebrook formula Equation (6-38)
$\frac{1}{\sqrt{f_{F}}}=-4 \log \log \left[\frac{\epsilon}{3.7 D}+\frac{1.256}{R e \sqrt{f_{F}}}\right] R e>4,000$
$\frac{1}{\sqrt{f_{F_{-1}}}}=-4 \log \log \left[\frac{\epsilon}{3.7 D_{-1}}+\frac{1.256}{R e_{-1} \sqrt{f_{F_{-1}}}}\right]$
$\frac{1}{\sqrt{f_{F_{-2}}}}=-4 \log \log \left[\frac{\epsilon}{3.7 D_{-2}}+\frac{1.256}{R e_{-2} \sqrt{f_{F_{-2}}}}\right]$

Perrys Chemical Engineers Handbook - 8th ed.
Table 6-1 Value of Surface Roughness for Various Materials
Commercial steel or wrought iron, $\epsilon=0.0457 \mathrm{~mm}$
Substitute the values of D, ϵ, and Re.
$\frac{1}{\sqrt{f_{F_{-1}}}}=-4 \log \log \left[\frac{0.0457 \mathrm{~mm}}{3.7(154.1 \mathrm{~mm})}+\frac{1.256}{257122.9957 \sqrt{f_{F_{-1}}}}\right]$
$f_{F_{-1}}=4.3038 \times 10^{-3}$
$\frac{1}{\sqrt{f_{F_{-2}}}}=-4 \log \log \left[\frac{0.0457 \mathrm{~mm}}{3.7(102.3 \mathrm{~mm})}+\frac{1.256}{387306.7052 \sqrt{f_{F_{-2}}}}\right]$
$f_{F_{-2}}=4.3963 \times 10^{-3}$

Let us calculate for the value of Darcy friction factors

$$
\begin{aligned}
& f_{D_{-1}}=4 f_{F_{-1}}=4\left(4.3038 \times 10^{-3}\right) \\
& f_{D_{-1}}=0.0172 \\
& f_{D_{-2}}=4 f_{F_{-2}}=4\left(4.3963 \times 10^{-3}\right) \\
& f_{D_{-2}}=0.0176 \\
& \Delta z \frac{g}{g_{c}}=\left(z_{2}-z_{1}\right) \frac{g}{g_{c}}=(10-2) m \times \frac{9.80665 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{1 \frac{1 g-m}{N-s^{2}}}=78.4532 \frac{\mathrm{~N}-m}{\mathrm{~kg}} \\
& \frac{\Delta V^{2}}{2 g_{c}}=\frac{V_{2}^{2}-V_{1}^{2}}{2 g_{c}}=\frac{\left(3.3795 \frac{m}{s}\right)^{2}-\left(1.4894 \frac{\mathrm{~m}}{s}\right)^{2}}{2\left(1 \frac{\mathrm{~kg}-\mathrm{m}}{N-s^{2}}\right)}=4.6014 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}} \\
& F_{\text {Line }_{-1}}=\frac{2 f_{F_{-1}-1} L_{-1} V_{-1}^{2}}{D_{-1} g_{c}}=\frac{2\left(4.3038 \times 10^{-3}\right)(15 \mathrm{~m})\left(1.4894 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(0.1541 \mathrm{~m})\left(\frac{1-g-m}{N-s^{2}}\right)}=1.8586 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}} \\
& F_{\text {Line }}^{-2}=\frac{2 f_{F_{-2}} L_{-2} V_{-2}^{2}}{D_{-2} g_{c}}=\frac{2\left(4.3963 \times 10^{-3}\right)(15 \mathrm{~m})\left(3.3795 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{(0.1023 \mathrm{~m})\left(1 \frac{\mathrm{kg-m}}{\mathrm{~N}-\mathrm{s}^{2}}\right)}=14.7244 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}} \\
& W^{\prime}=\Delta z \frac{g}{g_{c}}+\frac{\Delta V^{2}}{2 g_{c}}+0+F_{\text {Line }_{-1}}+F_{\text {Line }_{-2}} \\
& W^{\prime}=(78.4532+4.6014+1.8586+14.7244) \frac{\mathrm{N}-\mathrm{m}}{\mathrm{~kg}} \\
& W^{\prime}=99.6376 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}} \times \frac{1 \mathrm{~kg}}{9.80665 \mathrm{~N}} \\
& W^{\prime}=\Delta h=10.1602 m(\text { Pump Differential Head) } \\
& \Delta P_{\text {Differential }}=\rho \frac{g}{g_{c}} \Delta h=\left(997.05 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.80665 \frac{\mathrm{~N}}{\mathrm{~kg}}\right)(10.1602 \mathrm{~m}) \\
& \Delta P_{\text {Differential }}=99343.59463 \mathrm{~Pa} \times \frac{1.01325 \mathrm{bar}}{101325 \mathrm{~Pa}} \\
& \Delta P_{\text {Differential }}=0.9934 \text { bar (Pump Differential Pressure) }
\end{aligned}
$$

Let us calculate for the value of frictional losses
Friction loss ${ }_{-1}=F_{\text {Line }_{-1}}=h_{\text {Line }_{-1}}=\frac{-\Delta P_{-1}}{\rho}=\frac{4 f_{F_{-1}} L_{-1} V_{-1}^{2}}{2 D_{-1} g_{c}}$

Friction loss ${ }_{-1}=-\Delta P_{-1}=\frac{2 f_{F_{-1}-1} L_{-1} V_{-1}^{2} \rho}{D_{-1} g_{c}}$
Friction loss $_{-1}=-\Delta P_{-1}=\frac{2\left(4.3038 \times 10^{-3}\right)(15 \mathrm{~m})\left(1.4894 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}(997.05)}{(0.1541 \mathrm{~m})\left(1 \frac{\mathrm{kg-m}}{\mathrm{N-s}}\right)}=1853 \mathrm{~Pa}$
Friction loss ${ }_{-1}=-\Delta P_{-1}=1853 \mathrm{~Pa} \times \frac{1.01325 \mathrm{bar}}{101325 \mathrm{~Pa}}$
Friction loss $_{-1}=-\Delta P_{-1}=0.0185 \mathrm{bar}$

Friction loss ${ }_{-2}=F_{\text {Line }_{-2}}=h_{\text {Line }_{-2}}=\frac{-\Delta P_{-2}}{\rho}=\frac{4 f_{F_{-2}} L_{-2} V_{-2}^{2}}{2 D_{-2} g_{c}}$
Friction loss ${ }_{-2}=-\Delta P_{-2}=\frac{2 f_{F_{-2}} L_{-2} V_{-1}^{2} \rho}{D_{-2} g_{c}}$
Friction loss $_{-2}=-\Delta P_{-2}=\frac{2\left(4.3963 \times 10^{-3}\right)(15 \mathrm{~m})\left(3.3795 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}(997.05)}{(0.1023 \mathrm{~m})\left(1 \frac{\mathrm{~kg}-\mathrm{m}}{\mathrm{N}-\mathrm{s}^{2}}\right)}=14681 \mathrm{~Pa}$
Friction loss $_{-2}=-\Delta P_{-2}=14681 \mathrm{~Pa} \times \frac{1.01325 \mathrm{bar}}{101325 \mathrm{~Pa}}$
Friction loss ${ }_{-2}=-\Delta P_{-2}=0.1468 \mathrm{bar}$

$$
\begin{aligned}
& N P S H_{\text {Available }}=\frac{g_{c}}{g}\left[\frac{P_{\text {suction }}-P^{\text {sat }}}{\rho}\right]=\frac{g_{c}}{g}\left[\frac{\text { In Stagnation Pressure-In Vapor Pressure }}{\rho}\right]_{\text {Pump }} \\
& N P S H_{\text {Available }}=\frac{1 \mathrm{~kg}}{9.80665 \mathrm{~N}}\left[\frac{[0.0791 \mathrm{barg}-(-0.9816 \mathrm{barg})] \times \frac{101325 \mathrm{pa}}{1.01325 \mathrm{bar}}}{997.05 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}}\right] \\
& N P S H_{\text {Available }}=10.8481 \mathrm{~m}=10,8481 \mathrm{~mm}
\end{aligned}
$$

Results Comparison:

Description	Unit	FluidFlow Results	Hand Calculation	\% Difference
	m / s	1.49	1.49	0%
Velocity, $V_{-2}{ }^{\prime} V_{2}$	$\mathrm{~m} / \mathrm{s}$	3.38	3.38	0%
Reynolds Number, Re $_{-1}$	-	257094	257123	0.0113%
Reynolds Number, Re $_{-2}$	-	387302	387307	0.0013%
Darcy Friction Factor, $f_{D_{-1}}$	-	0.0174	0.0172	1.1561%
Darcy Friction Factor, $f_{D_{-2}}$	-	0.0178	0.0176	1.1299%
Pump Diff. Head, W^{\prime} or Δh	m	9.715	10.160	4.4780%
Pump Diff. Pressure, $\Delta P_{D i}$	bar	0.950	0.993	4.4262%

Friction loss $_{-1^{\prime}}-\Delta P_{-1}$	bar	0.019	0.019	0%
Friction loss $_{-2^{\prime}}-\Delta P_{-2}$	bar	0.149	0.147	1.3514%
NPSH $_{\text {Available }}$	m	10.8	10.8	0%

Commentary:

The results compare very well with the hand calculation.

